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Summary. According to the theory of "Atoms in Molecules" as developed by 
Bader and coworkers a molecule is partitioned into atoms separated by surfaces of 
zero flux in the gradient of the charge density. For the first time an accurate and 
explicit analytical expression is given for these interatomic surfaces. They are 
generated by a system of differential equations which can in principle be solved by 
using a series expansion. Unfortunately, this expansion has a small radius of 
convergence and can therefore not be applied in practice. However, by a combined 
Chebyshev-Fourier fit to a numerically obtained surface, the interatomic surface is 
globally described to any given accuracy. Finally, the algorithm is tested on a set of 
simple molecules and on the amide interatomic surfaces of the glycyl residue 
[HNCH2CO[. 
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1 Introduction 

Molecular electron distributions, obtained either from experiment or from theoret- 
ical computation are frequently analyzed by using the theory of "Atoms in Mole- 
cules" [1]. This theory partitions the electron density into atoms in a natural way 
using the gradient vector field of p. The topological properties of this field are 
revealed by tracing gradient paths, curves in real space such that at every point of 
the path the gradient vector Vp is tangent to the curve. These atoms are separated 
by surfaces of sometimes very complicated nature, called interatomic surfaces 
(IAS). These surfaces have to be known in order to perform numerical integrations 
over the atomic basin to obtain the average atomic properties [2]. For example, 
a bond energy can be expressed in terms of a surface integral [3], but also atomic 
multipole moments, volume, force, kinetic and potential energies, torque, power 
[4] can be evaluated via surface and volume integration. Only an implicit knowl- 
edge of the surface boundary is needed, explaining the present absence of any 
explicit expression to describe the surface globally over some desired range. 

It is the purpose of this work to make a first step in the study of the IAS as an 
object in itself, or in a broader scope, to allow the quantitative study of the gradient 
vector field with differential geometrical tools. Therefore an analytical expression 
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mus t  be cons t ruc ted  up to a sufficiently high degree of accuracy  in o rder  to be able  
to differentiate it  quickly  m a n y  t imes wi thou t  serious loss in accuracy.  

The  p a p e r  is o rganized  as follows: after a br ief  review of some crucial  concepts  it  
is shown why analyt ica l  techniques,  a l though  in pr inciple  feasible, are  unwie ldy  
and  useless in pract ice.  Accordingly ,  a flexible and  n o n - a r b i t r a r y  fi t t ing a lgor i thm 
is in t roduced  tha t  leads to a canonica l  analyt ica l  express ion i rrespect ive of  the 
molecu la r  coo rd ina t e  system used. F ina l ly  some c o m p u t a t i o n a l  detai ls  of  the 
deve loped  a lgor i thm are  discussed and  i l lus t ra ted for a set of  molecules.  

2 The mathematical problem 

The general  p roper t ies  of  the t o p o l o g y  of  the g rad ien t  vector  field of the charge  
dens i ty  have been extensively reviewed before [1]. Here  we will only  focus on the 
defini t ions and  concepts  we need in o rder  to  unde r s t and  the p r o b l e m  at hand.  As 
shown in Fig. la ,  the molecule  L iH  is pa r t i t i oned  into two a tomic  bas ins  by  the 
IAS. This surface is a bundle  of  g rad ien t  pa ths  which or ig inate  at  infini ty and  
te rmina te  at  the bond critical point. This po in t  is a cri t ical  po in t  (because Vp = 0) 

Li H 
Fig. la. Gradient vector field of LiH superimposed on the family ofiso-density contour lines. The outer 
contour value corresponds to 0.001 a.u. and the values increase in order 2 x 10", 4 x 10", 8 x 10" with 
n increasing in steps of unity from n = - 3. The sense of the gradient paths is denoted by arrows and the 
bond critical point is marked by a dot. They constitute the intersection between the interatomic surface 
and the plane of the paper. This picture illustrates the general topological features involved in the 
construction and appearance of an interatomic surface. Fig. lb. A three-dimensional display of the 
same interatomic surface in LiH and its assOciated bond path intersecting the surface at the (3, - 1) 
bond critical point. The lithium atom is situated at the endpoint of the bondpath on the concave side of 
the surface. The reader is asked to compare this view with the intersection shown in Fig. la 
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and is denoted by (3, - 1) where the first integer refers to the number of non-zero 
eigenvalues of the Hessian of p. The second integer is the "sums of signs" of the 
eigenvalues after according + 1 to a positive eigenvalue and - 1 to a negative. 

The bond critical point is the origin of the IAS as made clear by Fig. lb. 
Classically, the following equation describes the IAS: 

V p .  n(r) = 0 Vr ~ surface. (1) 

In words this equation states that the gradient of the electron density is perpendic- 
ular to the normal n of the surface. Thus the gradient of p is parallel to the surface, 
or finally, the surface is a bundle of gradient paths. The only condition that makes 
the above equation describe the IAS in particular is that it holds for all points, 
a fact which is not enough stressed. 

The whole topology of a charge distribution is contained in a system of three 
ordinary differential equations (ODEs), Eq. (2): 

dr Vp(r) 

dl - I1Vp(r)I1' (2) 

where r is a position vector and 1 is the pathlength. This equation expresses in 
differential form that the tangent to a gradient path is a normalized gradient vector. 
Finding an expression for the gradient paths and ultimately the IAS (which is 
a bundle of selected paths) reduces to solving the initial value problem in Eq. (2). It 
is a property of this initial value problem that one needs to specify just one (non- 
critical) point in real space to completely determine the solution for the unique 
gradient path through that point. 

The complexity of this equation is entirely determined by p, which is in general 
an extensive linear combination of primitive Gaussian functions. The mathematical 
literature on these systems of ODEs is mostly concerned either with qualitative 
descriptions of the solution (i.e., their topology) or with entirely numerical recipes 
to trace the gradient paths. Closed analytical expressions for this equation are out 
of the question except for the local behaviour of a trajectory in the neighbourhood 
of a critical point as explained below. 

An alternative initial value problem can be formulated by introducing the more 
abstract independent variable s. This new path parameter is related to l by the 
infinitesimal relation ds = dl/II Vp/I, so that Eq. (2) becomes 

dr 
ds = Vp(r). (3) 

In order to describe a complete path in space, s has to be varied from - oo to 
+ oo (see Ref. [1, p. 103]). This fact prompts the idea of natural coordinates [2] 

s, 0 and ~b, where the latter two angles are the usual angular spherical coordinates. 
By varying these coordinates over their complete range one does describe the 
whole atomic subspace. 

The initial value problem as given in Eq. (3) is suitable for analyzing the local 
behaviour of a trajectory in the neighbourhood of a bond critical point with 
position vector re. The standard mathematical technique employed here is lin- 
earisation [5], where the charge density p(r) is expanded around rc in a Taylor 
series, truncated after the second-order terms: 

1 p(r) ~ p(rc) + ~ (Pi) . . . .  (ri - r , , i)  + 7 Y', (Pij) . . . .  (rl - r~,~)(rj to, j), (4) 
i i , j  
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where r(rl, r2, r3), re(re, 1, re, 2, ro. 3), Pi =- @/Ori and Pi~ =- c32P/c~ric3rj. Note that the 
second group of terms vanishes because Vp = 0 at the bond critical point. Substitu- 
ting this expansion into the system of ODEs and diagonalizing the Hessian yields 
three uncoupled first-order differential equations, whose solution is 

r~ = r~.~ + (rl.o - r~,~)exp(2is) (i = 1, 2, 3). (5) 

The subscript o refers to the chosen initial point for the trajectory, 2 denotes 
the eigenvalue of the Hessian and the primes emphasize that the coordinates of 
the position vector are expressed with respect to the eigenvector axes system. If 
q/represents the unitary matrix transforming the original molecular frame to the 
eigenvector frame, then the coordinates with respect to the original molecular 
frame are given by r = q / - l r '  [6]. 

How should the initial points be selected to construct the bundle of gradient 
paths constituting the IAS? A practical choice is a small circle around the bond 
critical point in a plane with the proper orientation. This plane is determined by the 
two eigenvectors of the Hessian of p corresponding to the two negative eigenvalues 
of this matrix, which we call the eigenplane. 

It is worthwhile to mention that the following very simple system of ODEs also 
contains an "interatomic surface" or separatrix in mathematical language; 2 = - x, 

= 1 - x 2 - y2 [5]. This system has been useful as a "pilot" system in preliminary 
research to investigate the performance of various analytical procedures. 

3 The analytical approach 

A very general method to solve differential equations (and systems of them) is the 
Picard method [7]. Although it appears mostly in a purely mathematical context 
(e.g. existence theorems) it has some practical use. When applied to the "pilot" system 
it fails by serious convergence problems in the series expansion that is obtained. 

There is a rich literature on the solution of second-order differential equations, 
also known as boundary value problems. Beside the variationally based Rayleigh- 
Ritz [8] method, there is the projection (or Galerkin) method, [8] but for general 
cases the finite element technique [8] is among the most widespread in functional 
analysis. An initial value problem can be treated as a boundary problem where one 
integration limit is moved parametrically to infinity. This route is not very feasible 
because of extremely complicated integrals. 

Rather, two more direct methods can be applied: the Taylor series substitution 
method [9] and Adomian's decomposition method [10]. The latter approach has 
been implemented and the results will be discussed below but it is useful to explain 
briefly the formalism in the former method to understand the decomposition 
method better. 

The key idea is to expand the three unknown solutions r~(t) (i = 1, 2, 3) by 
a Taylor series in the independent parameter t which can be s or 1 (see above): 

1 dnrl t n. 
r,(t) = n~o ~ ~ -  (6) 

The solution is known if all derivatives can be computed and evaluated at the 
initial point. The zero-th derivative is the initial point itself and the first derivative 
is trivial because it is given by the ODE's themselves dr,/dt = pi f ( i  = 1, 2, 3) where 
f is 1 or 1 [1 Vp I], depending on whether one solves Eq. (2) or Eq. (3). Higher 
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derivatives can then be obtained by differentiating both sides. For  example, the 
second derivative is 

(7) 

If one opts for f = 1 (as in ODE Eq. (2)), the partial derivatives of Pi f  up to 
an arbitrary order are easy to evaluate (see Appendix). If however 
f =  1/11 Vp [1 = (p~ + p2 + p2)-1/2 the rule for differentiation of compound func- 
tions leads to a proliferation of terms and combinatorically complicated sum- 
mations. The discovery of a recursion formula in this new context considerably 
reduced the code for the implementation but in view of the discussion below it is 
questionable of this route could ever compete with the fitting algorithm presented 
in the next section. 

Consider the general equation of the form L ( u ) +  N ( u ) =  x(t)  where L is 
a linear operator and N represents a nonlinear operator. In the decomposition 
method the solution u(t) is expressed into components with respect to the para- 

oo n meter 2 or u(t) = ~,.=o 2 u.(t). The non-hnear term appearing in the equation to be 
oo n solved is similarly expressed as N(u) = ~ .=o / l  A.. The A. polynomials are defined 

such that each A. depends only on ul for i from 0 to n, so Ao = Ao(uo), 
A 1 = A I ( u o ,  U l )  , A 2 = A z ( U o ,  u s ,  u 2 )  , etc. These polynomials are defined as 

1 d" 
n! d2" N(u(2))lx=o 

and are determined by the form of N. In our case L is total differentiation with 
respect to the independent variable t (or L = d/dQ and since the ODE is auton- 
omous it follows that x ( t ) - - 0 .  The approximating solutions are then given by 
u, = L - 1 A . _ x  = ~o d t ' A , _ l  (n >1 1) where Uo is a known initial point. 

Explicit expressions for A, are given by Adomian expanded up to n = 10 [10]. 
Since we have a nonlinear vector function N (components Ni) of more than one 
variable the A,'s had to be computed by successive applications of the chain and 
product rule. As this becomes a formidable task for high n the derivation was only 
accomplished up to n = 4. If we denote the desired solutions by ri (i = 1, 2, 3) then 
r~ = ~ =  o ri, n(t) = ~-~= 0 (1/nI)ci, n tn" The coefficients c are listed up to fifth order 
below: 

Ci, o = ri, o, 

¢i, 1 ~ Ni, 
3 

j = l  

3 

Ci, 3 E 2 = (a j kN i )oCj ,  lCk, 1 "-F (~ jN i )oCj ,  2,  (8)  
j , k = l  

3 
Ci, 4, E 3 2 = (askzNi)oCj, 1% 1% 1 + 3(OjkNi)oCj, 2Ck, 1 "[- (ajNi)oCj, 3, 

j , k , l = l  
4- 

Ci, 5 E 4 : (~ jk lmNi)oCj ,  1Ok, 1Cl, 1Cm, 1 @ 6 ( t~k lN i )oCj ,  1Ck, lCl, 2 
j , k , l , m = l  

2 + 3(OjkNi)oCj, 2Ck, 2 + 4(O2kNi)oCs, lCk, 3 "q- (c3sNi)och,*, 

where Oi"j...~ is a shorthand notation for c~Tj...JOr~Orj.., c%. 
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As a test for the performance of these analytical expressions the gradient paths 
up to fourth order were plotted for the IAS of LiH. The radius e of the initial point 
circle proved to be a crucial parameter for the quality of the gradient path at finite 
order as opposed to the fitting algorithm discussed below. Ife is set to 0.001 a.u. the 
analytical path matched the true (numerical) path with a maximum deviation of 
0.03 a.u. over a range of 0.9 a.u. (Se [ - 300,0]). It will be demonstrated below that 
with a fitted polynomial of the same order an interval roughly four times larger is 
approximated more than an order of magnitude more accurately. Techniques such 
as the Euler transformation [10] or Pad6 approximants [11, 12] to accelerate 
convergence were not helpful in this test case. 

In summary, these results are disappointing and show that the power of an 
analytical approach, namely that it can in principle determine the track of a gradi- 
ent path from knowledge of all the derivatives at only one point, leads to its 
ultimate defeat for these heavily non-linear ODE's. This applies to the elegant 
Carleman linearization as well [13]. Adding to this the bad performance of the 
"pilot" system in other unsuccessful attempts, one is inclined to abandon this 
approach and move towards a fitting procedure. The only practical use of the 
formulae in Eq. (8) may lie in a combined numerical-analytical approach in which 
the steplength of some numerical integrating algorithm can now be increased. 

4 Theory of the fitting procedure 

It is desirable to have a fitting method that can approximate the true surface as 
closely as needed without introducing arbitrary parameters. As shown below 
a most natural option is the combined Chebyshev-Fourier basis set. 

The norm with respect to which the Chebyshev fit performed is called the 
uniform norm L~ and is defined as Lo~ = [ ] f - P l l ~  = maxa<x<b]f(x)- p(x)[ 
wheref(x) is the function that has to be approximated and p(x) is the approximat- 
ing polynomial for the interval [a, b] and a given weight function w(x). 

As a result of Weierstrass's theorem we can improve a fit to an IAS to any 
desired degree of accuracy. The approximating polynomial p(x) is constructed 
as a linear combination of Chebyshev polynomials T,(x), defined by T, = cos 
(n arccos(x)). The first few are given in Eq. (9): 

To(x) = 1, TI(X) = x, T2(x) = 2x 2 - 1, Z3(x ) = 4x 3 - 3x, T4(x) = 8x 4 -- 8x 2 + 1. 

(9) 

A surface is a two-dimensional manifold that can be represented by a vector 
function f(u, v). Each position vector of a point on the surface is given by r = f(u, v) 
=fl(u, v)el +fz(u, v)e2 +f3(u, v)%, where u and v are the two independent para- 

meters required to describe the entire surface and {el, e2, e3} is a set of orthonor- 
real basis vectors. One coordinate should express a periodic dependence, i.e. it is 
taken to be an angle, called 0, describing the initial points on the circle in the 
eigenplane. The second coordinate is chosen to be the pathlength (called l) describ- 
ing the radial behaviour of the gradient paths. This option benefits from the 
reference to the local axis system centered at the bond critical point in that the 
expression obtained is independent of the molecular axis system. 

The u-parameter curve is given by f(u, 0o) where u is l(Oo is a constant) and is 
called a ray. It describes the trajectory of a gradient path in the IAS from a given 
position on the initial point circle. In similar vein the 0-parameter curve is given by 
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f(lo, 0) (1o is a constant) and is called a ring. In general surfaces are often plotted as 
a twofold family of curves, each dependent on one parameter only. An IAS can be 
represented by a network of rings and rays. 

The fitting process occurs in two stages as described by the general formulae 
below, given for the general case of three componentsj~ fitted with respect to (l, 0). 
First the rays are fitted, one by one, with respect to a basis of Chebyshev 
polynomials: 

N 

f~(l, O) = ~ ci.(O) T,(1). (10) 
n 

The coefficients % are still parametrically dependent on the angular variable 0. 
Since the c~, are periodic functions of 0, they can be adequately expanded in 
a Fourier expansion, so that the total expression becomes 

M , N  

f.(l, O) = ~ (din m cos(m0) -k- d'z,m sin(mO) ) T,(l), (11) 
m , n  

where dinm, d~,m are the constants to be obtained [14]. 
The approximation formula for an arbitrary function F(1) in [ - 1, 1] is [15] 

V(1) ,.~ ~ CkTk-l(l) -- ½Cl, (12) 
k = l  

where the coefficients Ck are computed by Eq. (13) 

2 N 
Ck = ~ ...~=1 F(l,,,)rk_ l(/m). (13) 

The value of lm is one of the N zeros of TN(l) and is given by 1,, = cos(rc(m - ½)IN). 
The approximation can readily be extended to a general interval [a, b] by the 
following change of variable: s = 2(l - a - b)/(b - a). The latter two expressions 
yield the points within [a, b] where the function F(l) should be sampled radially. 
Gradient paths are traced from the bond critical point with some numerical 
ODE-integrator and at given intervals (specific for Chebyshev fitting) points on the 
IAS are calculated and stored. For  the angular variable 0, equidistant sampling is 
performed. 

A nice property of the Chebyshev fit is that if a fitted polynomial (typically of 
fairly high order N) is truncated to a polynomial of lower degree n, the latter is the 
most accurate approximation of degree n [15]. A theorem yielding L~ error 
bounds for the truncated polynomial informs us that the loss in using this poly- 
nomial as a best approximation is small for an arbitrary function [16]. At 
a qualitative level the above statement assures that even after drastic truncations 
the error is still reasonable as observed in all test cases. 

Another useful phenomenon is that the individual Chebyshev coefficients 
rapidly converge for an increasing number of sampled points [ 17]. This fact will be 
illustrated numerically below. It is important in that it encourages one to use by 
default a fairly high number of sampled points (typically up to 40) and then 
truncate the expansion according to required fitting precision. 

Finally, the quality of the fit is estimated b y  computing one discrete error 
measure and three continuous error measures L1, L2 and L~. In the following we 
focus on global error estimate, i.e. single numbers condensing the partial errors per 
ray and per component of the fitted vector function. The discrete measure is the 

N 3 familiar root mean square (rms) error defined as ( 1 / N ~ i  ~ j  (g l j - f j ( l i ,  0i))2) 1/2 
where 9q is the j-th component of the i-th grid point on the IAS andf j  is the j-th 
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component of the fitted function at that point. For an untruncated expansion the fit 
is exact for the grid points and therefore the rms error vanishes. It effectively 
measures how much the analytical rays deviate from the given data points, but it 
does not disclose what happens between those points. 

With the continuous measures we are able to check the interpolated points and 
can for example probe for any spurious wiggling. The integrals appearing in the 
definition of L1, Lz,  and Lo~ are approximated by a sum of typically a few hundred 
terms. Therefore equally spaced points on the rays are accurately computed and 
stored. 

5 Computation 

The IAS are fitted using the program MORPHY [18]. The wavefunctions of the 
optimized test molecules were obtained by the package GAUSSIAN 92 [19] at the 
HF/6-31G**//HF/6-31G** [20] level, except for the blocked glycyl residue, 
c~-(formylamino)-propanamide, computed at HF/6-311 + + G**//HF/6-31 + G* 
[21] (203 basisfunctions). 

Prior to any fit it is important to check that the data set to be fitted is reliable. 
For example, it is well known that the smoother a given function, the quicker L~ 
decreases or the better the fit for a given polynomial degree [16]. It has been 
observed in our case that the error L~o can drop by several orders of magnitude if 
(slight) wiggling of the rays of the IAS is removed. 

The quality of the fit is reliably determined by the global measures defined in 
Eq. (14), provided N is large enough and the traced paths are accurate: 

Zl -- [Ir - f ( l ,  0)]11 ~ ~ [ri, j - f i ,  jl, 

L2 = IIr-f(l ,O)ll2 ~ ~ Ir~,j-f~,jl j , (14) 

Lo~ = []r - f ( l ,  0)[Io~ ~, max ]r~,j -f , , j l ,  (J = 1, 2, 3). 
i , j  

These reference paths are numerically computed by the modified midpoint method 
[15], which is an improved version of the second-order Runge-Kutta method. The 
complete interval to be traced is subdivided according to the step length, typically 
between 0.01 and 0.02 a.u. This steplength is deliberately kept small in order to 
obtain a sufficient number of test points (N in the equation above) in between the 
sampled points to probe the quality of the fitted paths. The accuracy of the 
integration is determined by doubling the number of intermediate steps per 
subinterval until its endpoint changes by less than a preset accuracy value, 
10 -5 a.u. in our case. The radius of the initial point circle is set to 0.001 a.u. 
throughout. Once the Chebyshev coefficients are obtained the analytical expres- 
sion is not converted into a Taylor polynomial because evaluation of the latter 
gives rise to gigantic errors for orders higher than ten. Rather Clenshaw's recur- 
rence [15] is used to evaluate the Chebyshev polynomial directly. Furthermore, in 
all reported results each ray has been traced up to the 0.001 a.u. contour surface of 
the electron density. Tests have established that the global error is drastically 
reduced if the interval lengths for the Chebyshev fit are made to depend on the 
angular variable 0. 



Interatomic surfaces in the theory of atoms in molecules 473 

Linear  molecules provide an interest ing test case to focus on the purely radial 
fitting since for a cylindrically symmetrical  charge density the IAS is a surface of  
revolution where the profile can be represented by any ray [22]. The equat ion  of the 
surface then reduces to 

X =fl(s)cos(O), y =f2(s) sin(O), z = f3(s). (15) 

As a concrete example of an analytical  expression we display in Eq. (16) the 
funct ion fa for LiH where the molecular  axis coincides with the z-axis. The l inear 
combina t ion  of Chebyshev polynomials  is obta ined  by t runca t ing  a fit of thirty 
terms to ten terms, for an integrator  accuracy of 10-7 a.u.: 

f3(s) = 0.60 + 7.96 x 10-1Tl (s )  + 1.80 x 10-1T2(s) - 1.58 x 10-2T3(s) 

-- 4.69 × 10-aT4(s) + 1.63 × 10-4Ts(s)  + 3.91 x 10-4T6(s) 

-- 1.18 × 10-5Tv(s) -- 4.59 x 10-STs(s) + 6.55 x 10-6T9(s). (16) 

Note  that  the Chebyshev coefficients are rapidly decreasing with increasing order. 
For  this par t icular  fit L1 = 1 x 10-5 a.u., L 2 = 8 × 10-6 a.u., Lo~ = 1 × 10-5 a.u. 
and  the rms error is 8 × 10-6 a.u. To illustrate the aforement ioned p h e n o m e n o n  of 
the stability of lower order Chebyshev coefficients, an un t runca ted  expression of 

Fig. 2. The two interatomic surfaces delineating the glycyl residue in e-(formylamino)-propanamide. 
The two surfaces shown are constructed from the corresponding analytical expression, obtained by a fit 
to 20 traced rays and 20 tings. Each white dot represents a nucleus, the one in the center being the 
c~ carbon of the glycyl residue [HNCHzCO]. The three dots at the tight denote the NH2 group and the 
ones at the left the HCO group. No discrepancy between the numerical and analytical interatomic 
surface can be observed at maximum magnification on a high resolution screen (using AVS). The global 
continuous errors for this picture are given in Table 1 
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Table 1. The norms" L~, L2 (both with unit weight) and L~ for a fit with 20 Chebyshev coefficients and 
20 Fourier coefficients b. The integrator accuracy is 10-5 a.u. and the rays are traced up to the 0.001 a.u. 
electron density contour 

Molecule Surface Lx L2 L~ Molecule Surface L1 L2 L~ 

LiH LilH 9(-6) 4(-5) 6(-4) CO2 CIO 2(-5) 2(-5) 4(-5) 
BH BIH 3(--5) 3(-5) 1(-4) Bell2 Be[H 1(-4) 1(--4) 3(--4) 
LiF LilF 1( - 7) 6( - 7) 8( - 6) HzO OIH 2( - 6) 2( - 6) 2(-  5) 
HF HIF 2(-6) 1(-6) 2(-6) H2CO CIO 4(-5)  4(-5) 1(-4) 
NaC1 Na]C1 1(-8) 2(-8) 4(-7) H2CO CIH 3(-7) 5(-7) 5(-6) 
CO C[O 2(-4) 2(-4) 4(-4) CHaOH CIH 2(-6) 4(-6) 4(-5)  
OH- OlH 1(-6) 1(-6) 2(-6) CH3OH C[O 6(-6) 7(-6) 4(-5) 
C2Hz CIH 2(-  8) 2( -  8) 4( - 8) CH3OH OIH 2( - 6) 2( - 6) 2( -  5) 
HCN CIN 2(-5) 2(-5) 3(-5) Glycyl H(C=O)IN 1(-4) 2(-4) 9(-4) 
HCN HIC 3(-8) 3(-8) 5(-8) Glycyl C(=O)[NH2 5(-6) 5(-6) 2(-5) 

a Expressed in the form x(y) for x x 10 y 
b For linear molecules there is just 1 Fourier coefficient 

ten terms yields the same terms up to three digits except for c7 = 1.23 x 10-5, 
c8 = - 4.43 x 10 -5, c9 = - 8.58 x 10 -6. 

Rather than listing Chebyshev coefficients for the other test molecules only the 
global errors are shown in Table 1. All results were obtained in a few minutes per 
molecule on a STELLAR GS1025 computer except the glycyl residue which 
required about twenty minutes. 

Finally, the possibility of an analytical surface integral [23] has been investig- 
ated. Again, in principle it is possible but it is unlikely to be faster than a numerical 
method. The bottleneck in evaluating the integrals is the appearance of non- 
negligible high order terms as an argument of the exponential functions appearing 
in the integrand. To our knowledge this general type of integral cannot be solved 
exactly [24]. Perhaps in combination with a quadrature technique for volume 
integrals the analytical expressions for the IAS may prove useful, since it can 
provide everywhere accurate intersection points between the interatomic surface(s) 
and the integration rays. 

6 Conclusion 

An explicit analytical expression has been obtained for the boundaries of an atom 
which is the first necessary step in a quantitative study of interatomic surfaces. This 
work shows that, in principle, the actual analytical integration of the central system 
of ordinary differential equations is possible. Individual gradient paths lying in the 
interatomic surface can be described by a series expansion using the derivatives of 
the charge density at one single initial point. This procedure is therefore classifiable 
as an extrapolation method. Although this method can solve the system in theory, 
in practice it is cumbersome and exhibits slow convergence. Therefore an inter- 
polation method has been applied on data obtained by a numerical integrator. 
Attention has been paid to the straightforward extendibility of the set of basis 
functions, the possibility of arbitrarily accurate fits, and potential transferability 
of Chebyshev coefficients by introducing the local Hessian frame. Clearly, this 
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method is superior to the purely analytical approach since much better conver- 
gence is obtained. It can handle a molecule of any size and opens the route for 
a differential geometrical approach to the toplogy of the electron density. 
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Appendix 

Computation o f  a general derivative o f  p o f  any order n 

Usage of Gauss's product theorem avoids the application of the chain rule which is 
needed when the derivation passes the intermediate stage of molecular orbitals. 
Indeed, the total charge density can be broken down as follows 1-25]: 

N 
p = ~ ~jGi j ,  (A1) 

i , j= l  

where 

and 

i /  _ O~iO~ j ) 
Gi j  = exp~-(Ai- Aj)2 k=l~I Gp ~j , k ,  (A2) 

~ i A i  + o~jAj  
~ij = o~i -4- cxj, rp ,  j = r I P i j ,  P i j  = A i + Aj 

fm~, ij = r=02 s=0Z ( A i ,  k - -  P,j,k)(h-r)(Aj, k -- P,j,k) (zj-`) (li - r)I(lj - s)!r!s!" 

In this scheme ~ is the density matrix with respect to the primitive Gaussian 
functions Gi, the angular part of which is expressed as a cubic harmonical function: 
Gi = I-[~=1 ( r k -  Ak)t~exp(- a i ( r -  A)2). This is the general primitive function 
centered on a point in space with position vector A. Note that the parameters 
f"~, ij are only dependent on the nuclear position vectors, the exponential coeffi- 
cients c~ and the angular quantum numbers Ik, which makes these quantities 
evaluable prior to any knowledge of P. This equation scheme further shows that 
any partial derivative of p can be written as a simple product of derivatives with 
respect to one coordinate. The n-th derivative of Eq. (A3) yields Eq. (A4) (after 
omission of indices i and j): 

d'Gk _ d ~ d" 
fm ~ (r~ exp( -- ?r~)) = ~ E o  f "  ~ Em(rk). (n4) 

d~rk m=0 a r k = 

Setting E_ 1 to zero the recursive derivative is expressed as (for m >/0) 

dE"  
- m E , . _  1 - 2 ~ / E m +  1.  (A5) 

dr 

Taking advantage of the permutational symmetry in a general partial derivative 
(the index order is immaterial) differentiation up to 30th order has been imple- 
mented in a very compact code. 

li -I- lj 
1. 2 Ge, j,~ = ~, f,,k, ijr~,~e,~exp( - 7ij g.e~j), (A3) 

mk=O 



476 P.L.A.  Popelier 

References 

1. Bader RFW (1990) in: Atoms in molecules. A quantum theory. Clarendon, Oxford 
2. a. Biegler-K6nig FW, Nguyen-Dang TT, Tal Y, Bader RFW, Duke AJ (1981) J Phys B: At Mol 

Phys 14:2739, b. Biegler-K6nig FW, Bader RFW, Tang TH (1982) J Comp Chem 13:317 
3. Bader RFW, Wiberg KB (1987) in: Erdahl R, Smith VH Jr (eds) Density matrices and density 

functionals, p 677 
4. a. Bader RFW, Nguyen-Dang TT (1981) Adv Quant Chem 14:63. b. Bader RFW, Popelier PLA 

(1993) Int J Quant Chem 45:189 
5. Verhulst F (1990) Nonlinear differential equations and dynamical systems. Springer, Berlin 
6. Attempts to pursue this approach beyond second order lead to serious difficulties, one of which is 

the diagonalization of higher order tensors 
7. Reinhard H (1986) Differential equations. Foundations and applications. North Oxford Academic, 

UK 
8. Milne RD (1980) Applied functional analysis. Pitman, MA 
9. Nagle RK, Saff EB (1986) Fundamentals of differential equations. Benjamin, USA 

10. Adomian GA (1989) Nonlinear stochastic system theory and applictions to physics. Kluwer, 
Dordrecht 

11. Baker GA Jr (1975) Essentials of Pad6 approximants. Adademic, NY 
12. Char BW, Geddes KO, Gonnet GH, Watt SM (1990) Maple reference manual. Watcom Publ, 

Waterloo, Canada 
13. Kowalski K, Steeb WH (1986) Nonlinear dynamical systems and Carleman linearization. World 

Scientific, Singapore 
14. Note that this function is separable, i.e. it can be expressed as a product of two summations, each in 

one single variable. This facilitates partial differentiation and integration off~(/, 0) 
15. Press WH, Flannery BP, Tenkolsky SA, Vetterling WT (1986) Numerical recipes. Cambridge Press, 

UK 
16. a. Rivlin TJ (1990) Chebyshev Polynomials. From approximation theory to algebra and number 

theory, Wiley, US, p. 166ff. b. Dahlquist G Bj6rck (1984) Numerical methods. Prentice-Hall, NJ 
17. More precisely, a low order coefficient cn of the Chebyshev polynomial Tn in an expansion with 

N sampled points (N >> n) is very close to the same coefficient cn obtained in another expansion with 
M sampled points, if M is not too different from N 

18. Popelier PLA (1992) Program MORPHY, McMaster Univ. 
19. Gaussian 92 (1992) Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Wong MW, Foresman JB, 

Johnson BG, Schlegel HB, Robb MA, Replogle ES, Gomperts R, Andres JL, Raghavachari K, 
Binkley JS, Gonzalez C, Martin RL, Fox DJ, DeFrees D J, Baker J, Stewart JP, Pople JA, Gaussian 
Inc, Pittsburgh, PA 

20. Hariharan PC, Pople JA (1972) Chem Phys Lett 16:217 
21. a. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265, b. Clark T, Chandrasekhar J, 

Spitznagle GW, v.R. Schleyer P (1983) J Comp Chem 4:294 
22. Struik Dirk J (1961) Differential geometry. Addison-Wesley, London 
23. Marsden JE, Tromba JA (1981) Vector calculus. Freeman, San Fran 
24. Gradshteyn IS, Ryzhnik IM (1965) Table of integrals, series and products. Academic Press, NJ 
25. Daudel R, Leroy G, Peeters D, Sana M (1983) Quantum chemistry. Wiley, UK 


